Drone Factory

Vania Elizondo
Drone Factory
Tecnologico de Monterrey
Monterrey, México
vaniaelizondomartinez@gmail.com

Abstract—This document contains the work done for the
Drone Factory activity regarding the kinematic calculus, robot
modelling and connection for Unity to build a simulation of the
manufacturing laboratory at ITESM in Monterrey, Nuevo
Leon.

Keywords—virtual reality, Unity, UR5e, Kuka, Networks,
kinematics.

I. INTRODUCTION

SIMULATION IS ALWAYS A POWERFUL TOOL THAT HELPS PEOPLE
UNDERSTAND OR BE TRAINED WITH LABORATORY EQUIPMENT.
NOWADAYS, SINCE VIRTUAL REALITY TECHNOLOGY EMERGED,
SIMULATION TOOLS MAY BE UPGRADED IN ORDER TO IMPROVE IN
AREAS SUCH AS IMMERSION AND PRECISION. IN A FACTORY THERE
ARE TOO MANY MACHINES THAT INTERACT WITH EACH OTHER AND
REQUIRE TO BE MANIPULATED BY A TRAINED PERSON WHO
UNDERSTANDS THE OPERATION OF EACH TOOL IN THE FACTORY
ASSURING THE QUALITY OF THE MANUFACTURED PRODUCT.

VIRTUAL REALITY IS AN EXPERIENCE WHICH SIMULATES
SITUATIONS FROM THE REAL WORLD OR FROM THE IMAGINATION. IT
REQUIRES THE USE OF SPECIAL GLASSES WHICH SHOWS THE USER
THE DEVELOPED SIMULATIONS THROUGH ITS SCREENS. AS
TECHNOLOGY ADVANCED ALSO CONTROLLERS HAD BEEN
IMPLEMENTED IN ORDER TO EMULATE THE HANDS BASIC
MOVEMENTS SUCH AS POINTING, GRABBING OBJECTS OR CLICKING A
BUTTON BETWEEN OTHER FUNCTIONALITIES. THOSE HELPFUL
OPERATIONS ARE RESPONSIBLE FOR A MORE IMMERSIVE EXPERIENCE
MAKING AS WELL POSSIBLE FOR A LABORATORY OR FACTORY BEING
EMULATED.

SINCE DRONES ARE AN IMPORTANT ASSET DUE TO ITS MANY
USEFUL APPLICATIONS, PRECISION REGARDING ITS MANUFACTURE IS
REQUIRED. THEREFORE, THE MACHINES IMPLEMENTED IN THE
FACTORY NEED TO BE USED BY CAPABLE HANDS WHICH HAD
PREVIOUS EXPERIENCE WITH THE MANIPULATION OF SUCH
TECHNOLOGICAL TOOLS. THAT EXPERIENCE DOESN’T NECESSARILY
REQUIRE A PERSON’S FIRST CONTACT WITH THE MACHINE SINCE THE
TRAINING TO UNDERSTAND THE MACHINERY MAY BE IMPLEMENTED

VIA SIMULATION AND TAKING ADVANTAGE OF THE NEW
TECHNOLOGIES SUCH AS VIRTUAL REALITY.
II. UNIVERSAL ROBOT 5 E-SERIES KINEMATICS

Kinematics is the study of the motion of bodies or
systems of bodies without the consideration of forces
involved, such as causes and effects of the motions or
torques. In robotics, two types of kinematics are used in
order to know the end-effector location in the coordinate

©2019 IEEE

Gabriel Zamora
Drone Factory
Tecnolégico de Monterrey
Monterrey, México
£71.2995@gmail.com

Juan Palacios
Drone Factory
Tecnolégico de Monterrey
Monterrey, México
jnpdrpalacios@gmail.com

space (forward kinematics) or the joint angles required to
move the end-effector to a specific location (inverse
kinematics).

The Universal Robot 5 e-Series (URSe) is a 6
degrees-of-freedom (DOF) robot which can rotate 360° in
all of its joints. In order to simulate the URS5e in a virtual
reality environment, both forward and inverse kinematics
need to be considered for the correct functionality in the
simulation. The kinematics of the robot was calculated using
Matlab.

A. Forward Kinematics

Forward kinematics refers to the use of kinematic
equations of a robot to compute the position of the
end-effector from specified values for the joint parameters.
It is defined as:

$n=x(q), qlqui€[L2,..,n]} (D

To find the pose En given joint position q;

The Denavit-Hartenberg (DH) representation specifies 4
link parameters which are the angle (8) between 2 links, the
distance (offset) between links (d), the length of the link
along the common normal (1) and the twist angle between
axes (a). The DH values for the UR5e is the following.

TABLE L. URSE DENAVIT HARTENBERG

Link 9 d [mm] 1 [mm] a
1 0, 0 162.411
2 g, -422.925 0 -n/2
3 0, -393.575 0 0
4 0, 0 133.336 -2
5 -5 0 98.501 0
6 0 0 99.396 0

The values of the distances and offsets were calculated
through the computer-aided design (CAD) model of the
robot shown in Fig. 2.1.



jun
] 8
iy 2
8501

162411

Fig. 2.1. URS5e measurements.

With the DH table, the forward kinematics were
calculated using the transformation matrix between link and
link as follows.

cosf, —sin 8, cosa, sin 8, cosa, I,cosé,
A = sin 6, cos 8, cosa, —cosf,sina, [,sin@,
" 0 sina,, cos a, d,
0 0 0 1
Using Matlab computation, specifically Robotics

Toolbox using the commands teach() for the graphical user
interface (GUI) that shows the position and rotation of the
end effector and the angles for each joint and fkire to obtain
the forward kinematics given an angle-based starting
position. The model for the robot is as seen in Figure 2.2.

R: 180.000
P: 0.000
Y: 90.000

URSe

05 ™

@ o 1
° @ > 0.
05 @ e o

s
Y B o 4

X

Fig. 2.2. Matlab simulation for URSe.

In order to be certain that the model was correct, a
comparison was made with the actual robot’s teach pendant,
as shown in Figure 2.3.

Rt [ e
eature Active TCP
Base | ¥[rep X

-0.69)mm Rx|  0.003]rad

v [ -285.37mm Ry

it

71 i Z| 1080.96)mm RZ
l Joint Position

[

2.220|rad

-2.226/rad

> FFreearive || ] ZzeroPosition |

= 451 i |

Fig. 2.3. URSe teach pendant.

As it can be seen, the teach pendant shows an offset in
the Y axis of 30 mm, which is known by fabrication. There
is a slight error in both X and Z positions of 0.69 mm and 3
mm respectively which were taken as software offsets.

B. Inverse Kinematics

Inverse kinematics refers to the use of kinematic
equations of a robot to compute the joint angles needed to
move the end-effector location to a certain position. It is
defined as:

q= K—i("rn)’ q{q,i € [1,2,..,n]} 2)

To find the joints q, given a pose En.

In order to know the angles of each joint, the Robotics
Toolbox for Matlab was again used, this time applying the
command ikine to obtain the inverse kinematics given a
position or trajectory to follow.

The use of Matlab for the completion of the project is a
way to calculate all joint positions and angle values
correctly in order to simulate them efficiently in Unity.

III. MACHINERY SIMULATIONS

Regarding the factory’s specifications: three types of
robots, CNC mills and conveyor models were required to be
implemented and also programmed according to their real
counterparts movements and limits. First of all, the URS
robot model and basic mobilities were implemented
previously so its kinematics were calculated according to
the previous section. Nonetheless, the KUKA and FANUC
robots were just models requiring a program and the CNC
mills and conveyor models were required to be
implemented.

A. KUKA Robot

The KUKA model was separated in order to distinguish
its joints which are six corresponding to the six degrees of
freedom of the robot. Also the teach pendant was replicated
but its functionality was just the buttons of the movement
for each joint. The movements were limited as the datasheet
of the KUKA robot indicated. Figure 3.1 demonstrates the



implemented model with its controller as seen on the Unity
software.

All the coding was made using C# language and the
libraries given by Unity. As means of design for the
simulation the controller required to be suspended on air
while it was tossed or released from the grab. The model as
well required to have pivots in each joint in order to rotate
them without losing the figure.

Figure 3.1. KUKA Robot

B. FANUC Robot

As the model KUKA, FANUC model had its own model
already created. Nevertheless, its controller and motion was
yet to be implemented. So the same process was required.
Firstly the separation of the model in order to identify each
joint separately and place the pivot on its center. Next, the
reassemble of the FANUC robot and the construction of its
controller. Finally, the program of the joint rotations which
used primarily the Transform properties of Unity in order to
gain access to the joint’s angles. Furthermore, each button in
the teach pendant was associated with the robot's six joints
being twelve buttons as the movements required left and
right or up and down movements. The figure 3.2 illustrates
the FANUC model as shown in Unity software.

Figure 3.2. FANUC Robot.

C. CNC mills

The CNC mill was modeled after Haas’ Mini Mill CNC.
After retrieving the model for the page a problem was
presented because it required to be separated by parts for the
desired purposes. The parts separated consisted of the door
of the CNC, the X axis part, the Y axis part, the Z axis part,
the screen and controller and finally, the enclosure of the
Mini Mill model. Once achieved the correct dissection, the
controller model was implemented to the screen and
controller part of the machinery using buttons as the user
interface part in order to control the machine as the manual
configuration is done in the real world.

The configuration for manual manipulation is pressing
the Handle Jog button in order to unlock the Jog’s
movement, assigning the speed of movement for the desired
edge. Four speeds are eligible for the Mini Mill being the
speed one the slowest and the speed four the fastest. Once a
speed is selected, it is required to press a button between Z
edge, Y edge and X edge in order to manipulate one edge.
Once achieved the jog is moved to the right for downward
movement or left for upward on the Z edge, right for left
movement and left for right movement on the X edge and
right to move the axis to the front or left to move back the Y
axis.

Also, since the grab was a problem for the door to be
opened, a button was created on the controller to open or
close the door of the Mini Mill being the fastest solution and
the most useful. The Mini Mill model and controller may be
found on Figure 3.3.

Figure 3.3. CNC Mini Mill Model

D. Conveyor

The conveyor model was made from scratch by
using the Unity basic tools for object creation. The model
consisted of a table hollow from inside and a piece that
served as the moving part which traverses from one side to
another continuously if an object is placed over the piece.
The movement programmed was just a linear move in X
then after achieving the goal of getting to the other side of
the conveyor, the piece is lifted and placed on the return side
of the conveyor emulating an invisible piston that pushes the
object.
components on figure 3.4 being the part colored in black the
moving piece and the white cube the object.

The conveyor model is shown with all its

Figure 3.4. Conveyor



IV. Unity CoNNECTION WITH URSIM

URSim is a simulation software intended for offline
programming and simulation of both robot programs and
manual movement of robots. When Simulation mode is
selected, it is possible to simulate digital inputs on the I/O
page. The programs created for the movement of the robot
are handled by the simulation software.

This simulation software creates a virtual UR Controller.
The Real-Time Data Exchange (RTDE) interface provides a
way to synchronize external applications with the UR
controller over a standard TCP/IP connection, without
breaking any real-time properties of the UR controller. The
provided data is representing the robot's state, such as
positions, temperatures, etc. through a few server sockets in
the controller. A custom program was written to read these
streams.

The data is interpreted by a socket created in the Unity
environment. The socket contained the IP of the VM
running the URSim, the RTDE port configuration and the
transmission speed. The result was a socket receiving the
data provided by the RTDE as shown in Figure 4.1.

Welcome to Poly

Q unity D— =

Fig. 4.1. Conceptual communication between URSIM and Unity

With the data in the Unity Environment and a model of
the URSe a simulation of the Drone Factory is possible.
Adjustments of the interpretation of the data were necessary
by the conversion of units. The model provided was
simulated in the Zero State position taking care of the
rotation of each joint and if necessary adjusting them in the
robot controller script.

The end result is a robot in the Drone Factory that is
controlled by the URSIM as shown in Figures 4.2, 4.3, 4.4.

Fig. 4.2. Picture shows the Zero position send by URSIM

Fig. 4.3. Picture shows the First program position send by URSIM

AEECEE

Fig. 4.4. Picture shows the Second program position send by URSIM.

A. ANNEX 1

The following table shows the activities done
during “Semana i” showing the day of termination of each
activity.

TABLE I. TABLE TYPE STYLES

Activities done by the Week
Activities Mon Tue Wed Thu Fri

URS5e Denavit-Hartenberg
table
URSe measurements

v

URSe forward kinematics
modelation in Matlab
URSe inverse kinematics
modelation in Matlab
Kuka Denavit-Hartenberg
table

Kuka forward kinematics
modelation in Matlab
URSIM connection with
Unity

Unity Prefab for URSe
ZeroPosition

Unity Script for URSIM
data interpretation

Kuka model assemble and
simulation

Fanuc model assemble
and simulation

CNC assemble v

CNC error testing and
simulation
Conveyor assemble and
simulation




CONCLUSION

Virtual Reality is a useful tool to create simulations of
the real world in a secure way without the problems of
breaking something or creating a harmful code that can
break the machines used in the drone Factory.

Including the main tool known as Unity there are lots of
knowledge surrounding it to make a big project like this
work. Robotics, modeling, programming and networking
were some of the topics used during these weeks.

The Drone Factory is an ongoing project that is
searching to create a safe place for the students to learn how
to use the heavy duty equipment.

REFERENCES

[1] C. Herman (2019). Kinematics. 20-02-2019, de Tecnologico de
Monterrey.

[2] G. Eason, B. Noble, and 1. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.
(references)

[3] "KR AGILUS | KUKA AG", KUKA AG, 2019. [Online]. Available:
https://www.kuka.com/es-es/productos-servicios/sistemas-de-robot/ro
bot-industrial/kr-agilus. [Accessed: 01- Nov- 2019].

[4] "Mini Mill-EDU", Haascnc.com, 2019. [Online]. Available:
https://www.haascnc.com/es/machines/vertical-mills/mini-mills/mode
Is/minimill-edu.html. [Accessed: 01- Nov- 2019].

[5] Universal Robots Support. (2019). Overview of client interfaces.
10-01-2019, de Universal Robots.

[6] Universal Robots Support. (2019). Remote Control Via TCP/IP.
11-01-2019, de Universal Robots.



